0=-16t^2+320+32

Simple and best practice solution for 0=-16t^2+320+32 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-16t^2+320+32 equation:



0=-16t^2+320+32
We move all terms to the left:
0-(-16t^2+320+32)=0
We add all the numbers together, and all the variables
-(-16t^2+320+32)=0
We get rid of parentheses
16t^2-320-32=0
We add all the numbers together, and all the variables
16t^2-352=0
a = 16; b = 0; c = -352;
Δ = b2-4ac
Δ = 02-4·16·(-352)
Δ = 22528
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{22528}=\sqrt{1024*22}=\sqrt{1024}*\sqrt{22}=32\sqrt{22}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-32\sqrt{22}}{2*16}=\frac{0-32\sqrt{22}}{32} =-\frac{32\sqrt{22}}{32} =-\sqrt{22} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+32\sqrt{22}}{2*16}=\frac{0+32\sqrt{22}}{32} =\frac{32\sqrt{22}}{32} =\sqrt{22} $

See similar equations:

| -10d–-19d=18 | | (2x+3)(5x-2)=0 | | 2x-20+130=180 | | 10v+12v=-6 | | 2q^2-4q-1=7q^2-7q+1 | | 7xx=64 | | 11t+-17t=12 | | 6(3a)-(2)+5a=57 | | 8m-15-2m-3=-60 | | 2=n÷3 | | 2(1.5b-9)+6b=-7 | | (5x^2)+12=0 | | 1/x=4/x+1/x^2 | | 1/2(4x+2)=-2/3 | | 4(5)-7y=1 | | 0.3w-0.2w=3 | | 5(x-20)-10x=5 | | 3(12-x)=6 | | 3+m/4=6 | | 2+3x=3x=2 | | 2/6=3/8p | | x^2-9x+64-8600=0 | | 5x+2=-2x+7 | | 9x-77=65 | | -91=7/3-8x | | 20=6-2y | | x+12.5=-20 | | 60-z=9 | | 4^(x-1)=121*3^(x) | | 10m=10-5{m-7} | | 6b+4b=50 | | -9=h7 |

Equations solver categories